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Abstract 

 Renal fibrosis was a chronic and progressive process affecting kidneys in chronic kidney disease (CKD), 

regardless of cause. Although no effective targeted therapy yet existed to retard renal fibrosis, a number of 

important recent advances have highlighted the cellular and molecular mechanisms underlying the renal fibrosis. 

The advances including TGF-β/Smad pathway, oxidative stress and inflammation, hypoxia and gut                    

microbiota-derived from uremic solutes were highlighted that could provide therapeutic targets. New therapeutic 

targets and strategies that are particularly promising for development of new treatments for patients with CKD 

were also highlighted. 
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Introduction 

 Chronic kidney disease (CKD) had a high 

prevalence all over the world and was closely associated 

with high mortality [1-3]. The prevalence of CKD was 

estimated to be 8-16% worldwide. In patients over 64 

year old, the prevalence elevated to 23.4-35.8%, 

indicating increasing age contributed to elevate CKD. 

The yearly economic costs of medicine care for patients 

with CKD and or end-stage renal disease over age 65 

were $60 billion, representing 24% of total Medicare 

expenditures in 2011 in America. According to the 

Kidney Disease Outcomes Quality Initiative, the 

international guidelines define and classify CKD as 

decreased renal function shown by glomerular filtration 

rate (GFR) of less than 60 mL/min per 1.73 m², or 

markers of kidney damage, or both, of at least three 

months duration, regardless of underlying cause [1]. 

CKD were divided into five stages as follow: Stage 1: 

Kidney damage (pathological abnormalities or markers 

of damage including abnormalities in blood or urine tests 

or in imaging studies) with normal or raised glomerular 

filtration rate (≥90 mL per min per 1.73 m2); Stage 2: 

Glomerular filtration rate 60–89 mL per min per 1.73 m2 

with evidence of kidney damage; Stage 3: Glomerular 

filtration rate 30–59 mL per min per 1.73 m2; Stage 4: 

Glomerular filtration rate 15–29 mL per min per 1.73 m2; 

Stage 5: End-stage renal failure; glomerular filtration 

rate <15 mL per min per 1.73 m2 [1,4,5].  

 Renal fibrosis was characterized as a common 

endpoint of diverse CKD which resulted in functional 

damage ultimately leading to terminal renal failure [6-9]. 

Renal fibrosis is generally regarded as the dark side of 

tissue repair mechanisms. Fibrogenesis might be 

involved in the tubulointerstitium resulting in 

tubulointerstitial fibrosis, glomeruli resulting in 

glomerulosclerosis or the arterial vasculature resulting in 

atherosclerotic lesions [5,10]. Various action 

mechanisms were implicated in renal diseases and renal 

fibrosis [11-18]. Knowledge of the complex 

pathophysiological mechanisms contributed to CKD 

remains limited. In this review, we verify the critical 

roles of transforming growth factor-β (TGF-β)/Smad 

pathway, oxidative stress and inflammation, hypoxia and 

gut microbiota-derived from uremic solutes in the 

pathophysiology of CKD and renal fibrosis, summarize 

the action mechanisms of renal fibrosis, and discuss the 

effects of these mediators in the context of renal 

fibrosis. 

TGF-β/Smad in Renal Fibrosis 

 TGF-β was essential for normal tissue 

development, repair and maintenance for organ 

functions. TGF-β1 was known as an antiinflammation 

cytokine [18]. It produced anti-inflammatory effects 

through inhibition of mitogenesis and cytokine responses 

in glomerular cells and inhibiting infiltrating cells [18]. 

Transforming growth factor-β (TGF-β1) knockout mice 

showed multi-organ inflammation and TGF-β1 deficient 

mice exhibited lethal inflammation and die within three 

weeks [19]. Similarly, deletion of TGF-β1 or 

transforming growth factor-β receptor type II (TGFβRII) 

genes has been shown to cause autoimmune               

diseases [20,21]. Mice over-expressing latent TGF-β1 were 

protected against inflammation and renal fibrosis in obstructive 

nephropathy and glomerulonephritis [21-23]. Although                  

TGF-β-induced inhibition of NF-κB-mediated renal inflammation 

through induction of Smad7-dependent IκBα has been recently 

demonstrated [21,23], the signaling action mechanisms of its 

anti-inflammatory action remain unclear. Yet, 

upregulated TGF-β1 was related to pathological 

disorders in many kidney diseases [24,25]. 

 There is extensive evidence pointing to TGF-β1 

upregulation and its role in the pathogenesis of renal 

fibrosis in both animal models and patients with                   

CKD [18,26]. TGF-β1 mediated progressive renal fibrosis 

by stimulating production and suppressing degradation 

of extracellular matrix (ECM). Moreover, TGF-β1 caused 

renal fibrosis by the transformation of tubular epithelial 

cells to myofibroblasts through epithelial-to-mesenchymal 

transition (EMT) [23]. The central role of TGF-β1 on EMT and 

renal fibrosis has been confirmed by many experiments which 

indicated the ability of TGF-β1 blockade with decorin, 

neutralizing TGF-β antibody or anti-sense oligonucleotides to 

attenuate renal fibrosis [18]. Direct evidence for the causal role 

of TGF-β1 in renal fibrosis is confirmed in mice                       

over-expressing an active TGF-β1 form [27]. TGF-β has 

been shown to serve a critical mediator in the 

pathogenesis of glomerulosclerosis in patients with 

glomerular diseases, such as lupus nephritis, 

immunoglobulin A nephropathy, membranous 

nephropathy, focal and segmental glomerulosclerosis 
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and diabetic nephropathy. The upregulation of the three 

TGF-β isoforms and TGFβRI and TGFβRII has been 

uncovered in the glomeruli and tubulointerstitium in 

kidney diseases [28]. Upregulation of TGF-β1 caused 

excessive ECM productions, reduced ECM-degrading 

proteinase activity and upregulated proteinase inhibitor, 

that resulted in excessive ECM deposition. In progressive 

podocyte-associated glomerular diseases, excessive TGF

-β1 expression in the podocytes has been indicated the 

role of TGF-β1 in podocyte injury in patients with IgA 

nephropathy, focal and segmental glomerulosclerosis 

(FSGS) and diabetic nephropathy [29]. Tubular and 

glomerular TGF-β expression was increased in early and 

late stages of diabetic nephropathy and inversely 

correlates with glycemic control in diabetic patients [30]. 

TGF-β1 expression was stimulated by glomerular stretch 

and hyperglycemia in early stage, and by angiotensin II, 

advanced glycation end-product and platelet-derived 

growth factor [30]. Angiotensin II has been 

demonstrated to raise expression of TGF-β1 and its 

receptors [31,32]. 

 Mounting studies have identified Smad2/3 as 

two major downstream mediators of the actions of              

TGF-β1 (Figure 1). In the context of renal fibrosis, 

Smad2/3 are activated in both patients and animal 

models with CKD of diverse etiologies such as 

hypertensive nephropathy [31,33,34], obstructive kidney 

disease [35], remnant kidney disease [36,37], chronic 

renal allograft injury [38], diabetic nephropathy [39-41] 

and drug-induced nephropathy [42]. Many fibrogenic 

genes including plasminogen activator inhibitor-1, tissue 

inhibitor of metalloproteinase-1, connective tissue 

growth factor, proteoglycans, integrins and collagens 

have been shown to be the downstream targets of                

TGF-β/Smad3 signaling [43]. These observations 

demonstrate the central role of Smad3 in TGF-β/Smad 

signaling-mediated renal fibrosis. 

 Many natural products have been widely used as 

anti-fibrotic agents [44-56]. Poricoic acid ZC, Poricoic 

acid ZD and poricoic acid ZE, isolated from the surface 

layer of Poria cocos, exhibited a strong inhibitory effect 

on renal fibrosis and podocyte injury. The findings 

showed that new RAS inhibitors poricoic acid ZC, 

poricoic acid ZD and poricoic acid ZE treatment 

significantly attenuated EMT production by inhibiting 

Wnt/β-catenin pathway activation and specific Smad3 

phosphorylation by blocking the interaction of TGFβRI 

with Smad3 signaling in both TGF-β1- and                        

angiotensin II-treated HK-2 cells as well as unilateral 

ureteral obstruction (UUO) mice [57]. Similarly, renal 

fibrosis in a variety of animal models were mitigated via 

TGF-β/Smad pathways by administration of natural 

products, such as GQ5 [58], curcumin [59,60], 

arctigenin [61], resveratrol [62], sinomenine [63], 

berberine [64,65], leonurine [66], rutin [67],                

bergenin [68], oxymatrine [69,70], oleanolic acid [71], 

tanshinone IIA [72], astragaloside IV [73,74], (+/-)-

sinensilactam A [75] and epigallocatechin-3-gallate [76]. 

Oxidative Stress and Inflammation and Renal 

Fibrosis 

 Oxidative stress and inflammation played a 

central part in the pathogenesis and progression of            

CKD [77-82]. Renal fibrosis was a relatively common 

cause of CKD in humans. Rats or mice fed an                  

adenine-containing diet exhibited severe renal fibrosis 

resembling that seen in humans [83]. The renal fibrosis 

in this model was mediated by the renal tubular 

precipitation of dihydroxyadenine resulting in interstitial 

inflammatory cell infiltration, tubular epithelial cell         

injury, fibrosis and progressive deterioration of kidney 

function [84]. Progressive renal disease was largely 

driven by inflammation and oxidative stress. Oxidative 

stress and inflammation were inseparably linked as they 

produced a vicious cycle in which oxidative stress 

triggered inflammation by many mechanisms including 

activation of the transcription factor kappa B which 

resulted in the activation and recruitment of immune 

cells [7] (Figure 1). Inflammation, in turn, triggered 

oxidative stress through production of reactive oxygen 

species and reactive nitrogen species by the activated 

leukocytes and resident cells. Together these events 

promote tissue damage by inflicting apoptosis, necrosis 

and fibrosis [85]. 

 Under physiological conditions, oxidative stress 

gives rise to upregulation of the endogenous antioxidant 

and cytoprotective proteins and enzymes to prevent 

tissue injury. This process was mediated by the 

activation of the Nrf2 which regulated the basal activity 

and coordinated induction of numerous genes that 

encode various antioxidant and phase 2 detoxifying 
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enzymes and related proteins [81]. Nrf2 is an inactive 

complex in the cytoplasm by the repressor molecule, 

Keap1 which facilitated its ubiquitination (Figure 1). 

Keap1 contained reactive cysteine residues which 

function as intracellular redox sensors. Nuclear 

translocation of Nrf2 occurred by phosphorylation of its 

threonine or serine residues via upstream kinases, such 

as mitogen-activated protein kinases, protein kinase C, 

phosphatidylinositol-3-kinase/Akt, casein kinase-2 and 

PKR-like ER kinase [78]. Regulation of cellular 

antioxidant and anti-inflammatory machinery by Nrf2 

plays a central part in defense against oxidative stress. A 

number of studies have reported that the imbalance 

between NF-κB and Nrf2 pathways contributed to CKD 

and renal fibrosis [63,77,80,81,86]. 

 Besides, inflammation could in the activation of 

immune cells, including macrophages, dendritic cells and 

T cells. These immune cells release profibrotic cytokines 

and growth factors that contribute to renal                     

fibrosis [87,88].  

Hypoxia and Renal Fibrosis 

 The kidney was physiologically hypoxic despite 

its plentiful blood supply, because an oxygen shunt is 

Figure 1. The molecular mechanisms of renal fibrosis. Once an injury occurs in kidney, activated NF-κB and 

TGF-β/Smad pathways, as well as inhibited Nrf2 pathway were observed. The activation of NF-κB and                   

TGF-β/Smad pathway induce inflammation and fibrosis, while the activation of Nrf2 pathway results in                  

anti-inflammatory effects. 
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present between arteries and veins. Therefore, it is 

reasonable to consider that erythropoietin-producing 

cells reside in the kidney, where they can sensitively 

detect hypoxia owing to anemia [89-91]. Physiological 

hypoxia has been uncovered in mammals and in hypoxia

-monitoring transgenic mice and rats produced by using 

hypoxia-inducible factor system. Expansive kidney 

hypoxia in CKD has also been verified in both patients 

and animal models. In CKD, hypoxia appeared in 

tubulointerstitium via multiple mechanisms. First, 

glomerulosclerosis resulted in a reduction of flow in 

downstream peritubular capillary, which further 

compromised by constriction of efferent arterioles of 

glomeruli and peritubular capillary owing to RAS 

activation. Second, the loss of peritubular capillaries 

occurred owing to fibrosis reduced blood perfusion. 

Third, excessive ECM deposition by fibrogenesis 

increased the distance between capillary and tubular, 

diminishing the efficiency of oxygen diffusion. 

 Upregulation of hypoxia-inducible factor 1α    

(HIF-1α) in transgenic mice upregulated vascular 

endothelial growth factor and platelet-derived growth 

factor-B expression and augmented endothelial cell 

proliferation. Although increased production and 

decreased deposition of ECM were observed in 

transgenic mice compared to control mice, they did not 

display renal injury or dysfunction [92]. These results 

were consistent with study indicating that conditional 

knockout of HIF-1α in the proximal tubules lessened 

fibrosis in mouse UUO [89]. Given that deposition of 

ECM was a part of repair processes unless it is 

uncontrolled, hypoxia-inducible factor activation by 

hypoxia in tubular cells mitigated renal injury by the 

upregulation of angiogenic and fibrogenic factors. 

Uremic Solutes and Renal Fibrosis 

 Fibrosis was the final result of a complex 

signaling cascade of intracellular and intercellular and 

molecular responses initiated by organ injury [10]. The 

fibrotic process and fibrotic-associated pathways are 

conserved between different organs. EMT has emerged 

as a mainly origin of collagenous matrix-producing 

myofibroblasts that contributed to the fibrotic response 

[46,93-95]. Renal fibrosis ends in uremic stage, yet 

uremia per se also further promoted the fibrogenesis 

owing to the direct biological effects of uremic toxins, 

such as, indoxyl sulfate (IS) and p-cresyl sulfate (p-CS). 

At least five uremic toxins showed a direct link to EMT 

and renal fibrosis [96-99]. 

 Uremic toxin IS was a small organic aromatic 

polycyclic anion derived from dietary tryptophan by gut 

microbiota that has widely been investigated in linking 

with CKD-associated cardiovascular disease [96,100-102], and 

IS can induce vascular calcification and correlates with coronary 

artery disease and mortality [103]. IS also contributed to a 

plethora of pathologies observed in dialysis patients, 

including tubulointerstitial inflammation and kidney 

damage [96]. IS overload augmented the gene 

expression of tissue inhibitor of metalloproteinases-1, 

intercellular adhesion molecule-1, alpha-1 type I 

collagen, and TGF-β in the renal cortex of 5/6 

nephrectomized rats [104]. Moreover, IS stimulated the 

production of TGF-β in renal proximal tubular cells. 

Other study indicated that stimulation of HK-2 cells to IS 

resulted in a reactive oxygen species-mediated 

upregulation of plasminogen activator inhibitor-1, a 

downstream signaling mediator of the TGF-β signaling 

related to most aggressive kidney diseases [105]. 

Furthermore, another study demonstrated that IS can 

increase α-SMA and TGF-β expression in HK-2 cells by 

activation of the (pro)renin receptor through reactive 

oxygen species-Stat3-NF-κB pathways [106]. IS also 

activated the TGF-β signaling, as showed by an 

increased Smad2/3 phosphorylation [97,107].  

 Although EMT contribution to fibrosis was 

controversial, phenotypic alterations reminiscent of EMT, 

also presented as epithelial phenotypic changes, might 

play an important role in the fibrogenesis and disease 

progression [108]. A number of studies have 

demonstrated that IS induced EMT, as indicated by a 

downregulated expression of E-cadherin and zona 

occludens-1, and upregulated α-smooth muscle actin                 

(α-SMA) expression in rat proximal tubular cells                    

(NRK-52E) and rat kidneys [109]. Furthermore, IS 

promoted EMT-associated transcription factor Snail 

expression, concurrent with an elevated expression of              

α-SMA and fibronectin and diminished E-cadherin 

expression in vitro [97]. Similar effects of IS have also 

been observed in human renal cell models [109]. 

 In addition, genetic or microRNA-based 

mechanisms are also reported to inhibit renal fibrosis 
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through modulating signaling pathways to prevent the 

progression of renal fibrosis during CKD. Knockdown of 

profibrotic factor Smad4 alleviated renal fibrosis in mice [110]. 

microRNA-23b, microRNA-30e and microRNA -135a was 

significantly altered in CKD mice [111,112], indicating 

microRNAs as biomarkers and therapeutic targets for 

CKD.  

Conclusion 

 From the above it is clear that our knowledge of 

action mechanisms contributing to renal fibrosis had 

rapidly investigated and expanded over the several 

decades but we were still confused. Nevertheless, the 

novel knowledge obtained recently points to many new 

methods to combat renal fibrosis, at least partial 

reversal of fibrotic tubulointerstitial injury. Future 

investigation need to clarify whether individual 

mechanism contributes to all or at least many renal 

fibrosis models and would therefore be main candidates 

for therapeutic strategy and intervention at very early 

stage of fibrogenesis. 
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